WEB Camera
with horizontal and vertical rotation

ENTRY 001138

The web is today’s revolution. It has become fast and its protocols can travel over many types of media. They can transfer voice and photos as well.
Today, Web cameras are common computer devices. They use USB 2.0 to communicate with PCs and they are stack near them. They have the advantage of sending 30 frames per second. They make use of computer equipment to transfer their photos to the internet or write them as video on hard disk. Still cameras are cheap. However, if we want to get photos from different angles or if we want to put a camera near the ceiling, we should pay a serious amount of money.
[image: image1]I always wanted such a camera to inspect around from 0 to 180 degrees.
DESIGN DETAILS
 A C328 JPEG co​mp​ression module was lying on my shelf and a Wiz810 mo​dule just arrived from WIZNET after my entry in the competition. Now I needed a CPU to control these and two servos to rotate the camera. The power could be a batttery or I could use power over the ethernet. For de​ve​loping pe​rpo​ses I chose the battery. In a second state of development I will use power over the ethernet when the camera will be near the ceiling.
The CPU that is used to support the Web Cam is Microchip dsPic30F4013. The CPU executes instructions using machine cycles that vary in length from one (DSP instructions) to four clock cycles. Furthermore, it has two hardware Uarts and one SPI interface. The frequency of the crystal that was chosen is 8MHz with PLL x 4 enabled, that makes a 32MHz clock.
[image: image3.emf]
[image: image7.jpg]

The C328 module has also a serial communication inte​rface. The Uart_2 of the CPU is dedicated to communicate with the camera module. The speed was set down to 57 Kb. The maximum speed for the camera module is 115Kb but after practice it was found out that it works better in 57 Kb. In low speed it responds instantly at the control codes. At high speed there are times that the camera ignores the control code and the CPU must issue a new stream of codes. Working in the speed of 57Kb the final application gives 3 to 4 frames per minute. At a high speed of 115Kb this is 4 to 5 frames per minute. The difference isn’t valuable for the end user.

At 57Kb there is no need to acknowledge the camera and the code becomes simpler. When the host wants to communicate with the camera, it should issue a Sync signal until the camera respond with acknowledgement. Then the former sends streams of codes for the packet length and the type of photo. Finally it requests the packets with the photo information. The photo is already compressed in Jpeg format. The size of the photo depends of the luminance. It floats from 15KB to 25KB for resolution of 320X240 pixels.
The Uart_1 and the SPI interface shares the same pins of CPU. The command U1MODEbits.ALTIO = 0Χ1 alter the Uart_1 to use the alternate pins to make the path free for the SPI. As you can see in Listing 1 there is a delay command. It need some time to do the job. A delay of 200ms is enough.
CHIP_WRITE(unsigned addr,char data)

{

char i;

PORTBbits.RB11 = 0x1; Delay_us(20); //SPI_EN

PORTBbits.RB12 = 0x0; Delay_us(20); // /SCS

spi_write(0xF0); // opcode for write

i=((addr & 0xFF00) >> 8);

spi_write (i);

i= (addr & 0x00FF);

spi_write(i);

spi_write(data);

PORTBbits.RB11 = 0x0; //SPI_EN

PORTBbits.RB12 = 0x01; // /SCS

return 1;

}

//This function reads the value from W5100 registers.

char CHIP_READ(unsigned addr)

{

char data,i;

PORTBbits.RB11 = 0x1;
Delay_us(20); //SPI_EN

PORTBbits.RB12 = 0x0;
Delay_us(20); // /SCS

spi1_write(0x0F); // opcode for Read

i=((addr & 0xFF00) >> 8);

spi1_write(i);

i=(addr & 0x00FF);

spi1_write(i);

data = spi1_read(i); // read data

PORTBbits.RB11 = 0x0; // SPI_EN

PORTBbits.RB12 = 0x01; // /SCS

return data;

}
Listing 2 Write and Read functions with SPI

According to SPI protocol, there are only two data lines used between SPI devices. As a result, it is necessary to define OP-Code for writing and reading. The heart of the Wiz810 module is the W5100. It uses the 0xF0 OP-Code for writing and the 0x0F OP-Code for reading. If those two OP-Codes had not been given, the W5100 would ignore the command and no operation would be started. In Listing 2 you can see the functions for Reading and Writing. Except the two data lines (MOSI, MISO) three other lines are necessary for the communication between CPU (Host) and the Wiz810 module.
These are SPI_EN (J2:9) , SS (J1:10) and SCLK (J1:7).
Another important signal is the RESET (J2:2). A reset signal should be issued to the module before the host begins the communication. Thus, a total of six lines are needed to communicate the host with the Wiz810 module in SPI interface.
The dsPic30F4013 has 2KBs of RAM. One jpeg photo ranges from 15 to 25KB that is too big to fit in host’s Ram. It’s better (while the photo’s data comes in 64 byte packets) to write immediately the data in the Wiz5100 ram.
Two standard servos are used to support the rotation of the camera. The pins 8, 9 of the host are put into comparator mode. The timer 2 should be enabled. The PWM period is specified by writing the PR2 register. The PWM period can be calculated by using the equation: PWM period = [(PRx) + 1] • 4 • TOSC • (TMRx prescale value). PWM frequency is defined as 1/[PWM period]. For more information, you can refer to the dsPic30F4013 datasheet manual. Listing 3 and 4 displays the code for this.
[image: image4.emf]The value given to the OC1RS and OC2RS re​gisters can be consi​der​ed duty cycle The values can be from 25 (0 degrees on servo) to 85 (180 degrees on servo)
Writing the firmware . . .
 Any time a new device arrives I search at the manufacturer’s web page to find out what functions there are concerning this device. Now I did the same for the Wiz810 module.
[image: image5.emf]
All the functions or C code I found is developed around the Atmel Cpus. But this doesn’t worry me because the syntax is the same. That’s C. Small changes concerning the Microchip CPU and I had working functions rapidly developed.

I also read the article in the Circuit Cellar magazine. I keep the same name for the function for easy reference to the original code. The algorithms described in Wiz810 reference manual are detailed. With the help of the ready functions I put all the puzzle together. The camera firmware was developed a few months ago for an other project. I copied and pasted the functions to the new project.
 Next step was to determine what actions my Web Cam would do and how the photos would be transmitted to the host. The transmitting method chosen was the UDP packet. The client program would be in charge of collecting the packets and checking the integrity of the photo. The Web camera is free form the client program.
[image: image6.emf]The camera waits to receive a packet and then it examines the first byte.

Numbers 49, 50 are associated with photos. Number 49 instructs the camera to get a photo at a resolution of 320X240 pixels. Number 50 does the same for a 640X480 resolution.

If number 51 arrives then the following two bytes in the packet concern the servos. OC1RS and OC2RS registers are informed of their new values and the servos move to the new location.

Number 52 instructs the camera to store the following 12 byte to EEPROM with the notation of 4 byte IP, 4 bytes Subnet mask and 4 bytes for then Gateway address. This enables the user to setup the camera according his local network characteristics and the camera loads these values from EEPROM upon start-up.
Numbers 53 and 54 mean using the two following bytes to rotate the camera to a new position putting these values to OC1RS and OC2RS registers and then to get a photo at 320X240 or 640X480 pixels respectively.
I don’t use the W5100 interrupt line. I had to create a queue in the ram with client’s requests and serve them one by one. The whole algorithm can give a count of 3 to 4 photos per minute. So a queue doesn’t worth.

The code polls the wiz810 for data. If there are some data then it switches on a case as described above. All other cases are ignored. This means that clients have to wait until the end of a transition to request a photo. Listing 5 show the begin of the endless loop.
Some words for the C328 Module

Lets leave the C328 Module user manual to describe it. I’m copying

The C328 module is a highly integrated serial camera board that can be attached to a wireless or PDA host performing as a video camera or a JPEG compressed still camera. It provides a serial interface (RS-232) and JPEG compression engine to act as a low cost and low powered camera module for high-resolution serial bus security system or PDA accessory applications.

And it continues . . .

Features
􀂾 Small in size, low cost and low powered (3.3V) camera module for high-resolution serial bus security system or PDA accessory applications.

􀂾 On-board EEPROM provides a command-based interface to external host via RS-232.

􀂾 On board OmniVision OV7640/8 VGA color sensor.

􀂾 Built-in JPEG CODEC for different resolutions.

􀂾 Built-in down sampling, clamping and windowing circuits for VGA, QVGA, 160x120 or 80x60 image resolutions.

􀂾 Built-in color conversion circuits for 2-bit gray, 4-bir gray, 8-bit gray, 12-bit RGB, 16-bit RGB or standard JPEG preview images.

􀂾 No external DRAM required.

Figure 1 shows the communication between host and the C328 module to get a Jpeg photo at 640X480. Please refer to the C code to see how these functions are implemented.
Building PCBs
When the Wiz810 module arrived I had already developed a PCB for demonstration purposes at the school. Thanks to Microchip (who sends me these parts as samples -Microchip thanks again) a dspic30F4013 was already soldered and checked for proper use. Two regulators are used on this board. The Microchip MCP1826S-5002 E/EB supports the 5V and feeds the CPU and the servos. The Microchip TC2117-3.3VDBTR is also on the board to regulate the power of the battery to the 3.3 V at 800mA to feed the camera and Wiz810 module. A NPN transistor – BSS22 – acts as a switch to power on and off the camera. The camera as mentioned above works at 3.3V and the CPU at 5V. I use a resistor divider R3=1.8K, R5=3.2K for Tx line and a resistor R4=33 in series for Rx line.
Althoug the Wiz810 module is 5v tolerant I use the same notation for SPI signals because the resistors were there from the first implementation of this PCB. Some passive components like capitors are also sample from AVX -Thanks www.AVX.com -thus my entry is referred to as a Web camera with horizontal and vertical rotation build with samples.

A green led Indicates that power is on and a Red led on pin 32 flashes when C328 gets a photo.
A second PCB implemented to hold the Wiz810 module and the Servo connectors. It was hard to find 2mm pitch SMD connectors so the Wiz810 module was soldered on the PCB
All PCBs are in form of 70mm X 30mm single layer and back to back stack each other.
Figure 2 is the schematic for the host and figure 3 is the one for the Wiz810 and servos.

[image: image2]

The client

The client program is a window based program. It developed in Microsoft visual basic Ver 6 environment.
The heart of the application is Microsoft winsock Activex control. It raises an Arrival event every time a Packet arrives in the socket. I set up the default parameters to Port : 50000 IP :10.0.0.84 and Gateway :10.0.0.138
The user can alter them and store the values to the Web camera’s EEPROM with a click of the SET button.

Two sliders are used to move the camera vertically and horizontally.

To get a photo the user clicks on the button 320X240. The program sends a UDP packet to port 50000 with one byte (see firmware above) which contains the number 49. For the Web camera that means to get and send a photo.

The first packet the client receives contains the length of the photo. The packets are stored in memory and when the length is reached the photo is loaded on an image control. The image controls have the property to stretch the image or not. A photo with a resolution of 320x240 can be doodled without blur.

A photo with a resolution of 640X480 covers the whole window and is more distinct. It needs double the time. This can be done clicking the 640X480 button.

Conclusions
Now I have built my own web camera. The application responds with 3 to 4 frames per minute. Are they enough? Yes and no. if it is compared with commercial cameras the answer is no; but I can be proud of building a web camera using my knowledge, and getting experience too. I can tell a friend that when he was coming in I got a photo of him and now his photo is on my monitor.

And last but not least I want to participate in this competition.

Further development

A web camera with Mpeg4 streaming video.
C328 �CAMERA

CPU�dsPic30F4013

Wiz810�MODULE

SERVO X

SERVO Y

WORLD

Figure 1: Block diagram of Web Camera

Uart1_Init(57600);

U1MODEbits.ALTIO = 1; // clear the way for SPI

Delay_ms(200); // It need some time to do the job

Spi_Init_Advanced(_SPI_MASTER, _SPI_8_BIT, _SPI_PRESCALE_SEC_1, _SPI_PRESCALE_PRI_1, _SPI_SS_DISABLE , _SPI_DATA_SAMPLE_MIDDLE,_SPI_CLK_IDLE_LOW,_SPI_IDLE_2_ACTIVE);

Listing 1: SPI initialization

Figure 2 wiz810 and Servos

�

// OC1=CAMERA HORIZONTAL OC2=VERTICAL

OC1CON=0x0005; // Output Compare ch 1 init .. dual compare mode .. continuous pulses output

OC2CON=0x0005; // Output Compare ch 2 init .. dual compare mode .. continuous pulses output

OC1R=5; // rising edge start

OC2R=5; // rising edge start

OC1RS=52; // falling edge start ... can be considered duty cycle .. can be changed at will

OC2RS=52; // falling edge start ... can be considered duty cycle .. can be changed at will

//from 25 to 80 for a 180 retation

InitTimer2Interrupt();

T2Conbits.TON=1; // enable timer2

Listing 3 Comperator 1 and 2 setup

void InitTimer2Interrupt() // Configure Timer2

{

IFS0.F6 = 0; // clear TMR1IF

T2CON.F4 = 1; /* timer prescaler bit 4-5 1:1,1:8,1:64,1:256 */

T2CON.F5 = 1; /* timer prescaler bit 4-5 1:1,1:8,1:64,1:256 */

T2CON.F15 = 1; // Timer On

PR2=600; /* ok this can be considered switching frequency This can be changed at will for a desired frequency.*/

}

Listing 4 Comperators needs timer 2 to be enabled

do{ // begin of endless loop

do{

 hi_byte = rd_wiz_reg(Sn_RX_RSR0(0));

 lo_byte = rd_wiz_reg(Sn_RX_RSR1(0));

 get_size = make16(hi_byte,lo_byte);

}while(get_size <=0x0000); // if no bytes received --> loop

|

|

|

} while(1);

Listing 5: Begin of the enless loop. It polls the Wiz810 for data.

�

Figure 1 Host is on the left side

Figure 2 CPU and power supply �

Figure 3: The client

�

PAGE
	WEB CAMERA
	

	ENTRY 001138
	 9

